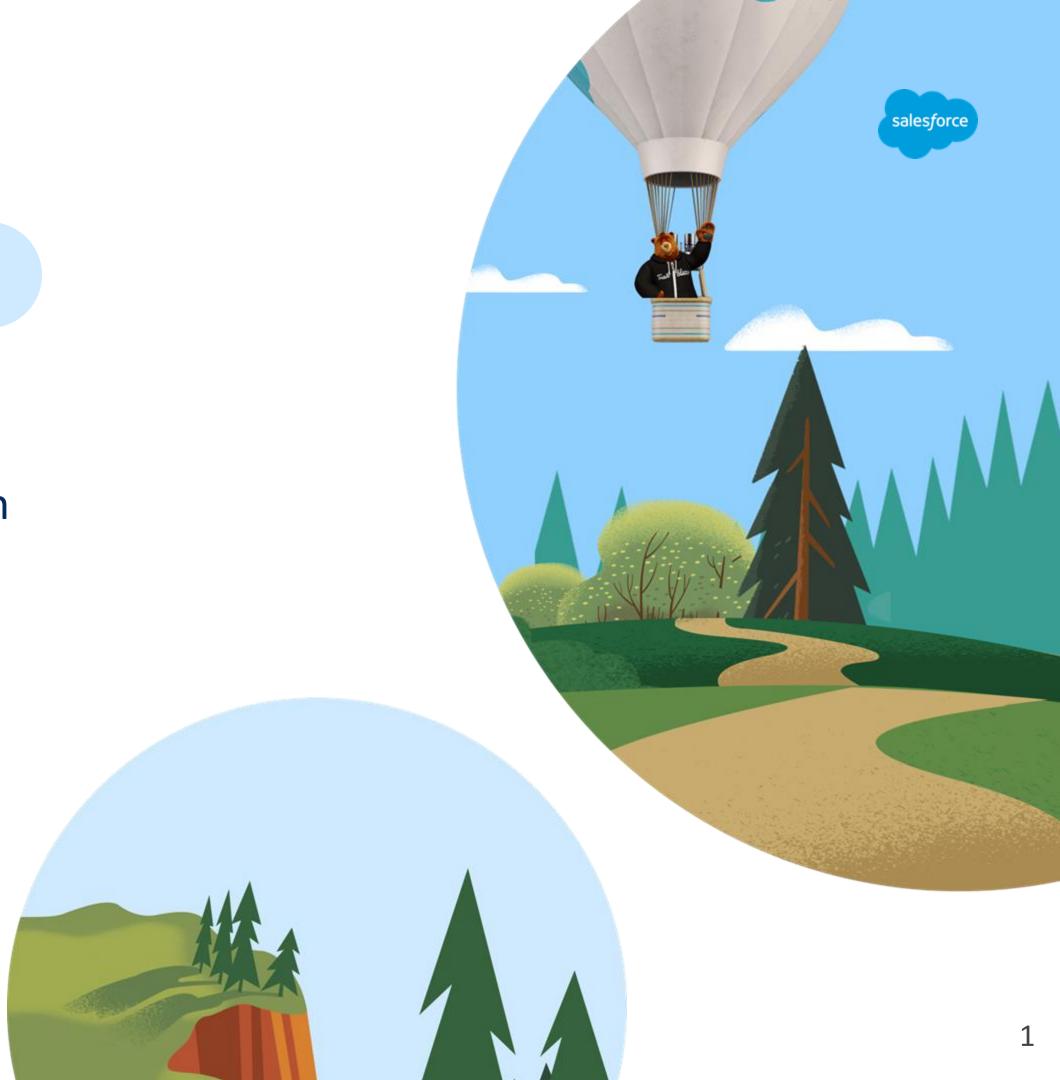


Evaluation and Benchmark ~ 20min

Parametric Knowledge Adaptation

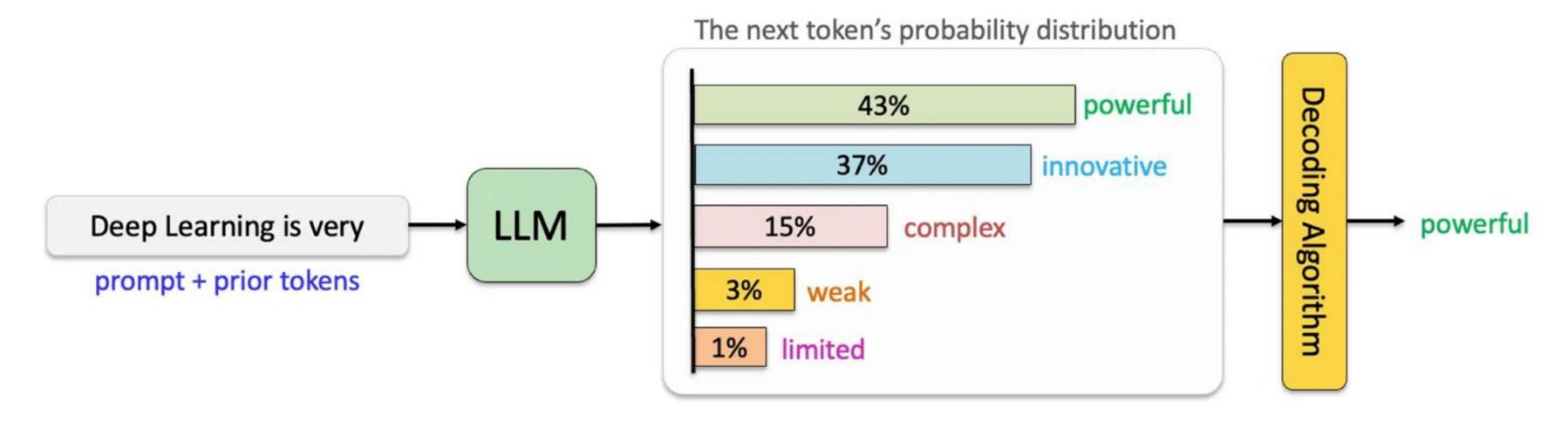
Semi-Parametric Knowledge Adaptation

Summary, Discussion, QAs



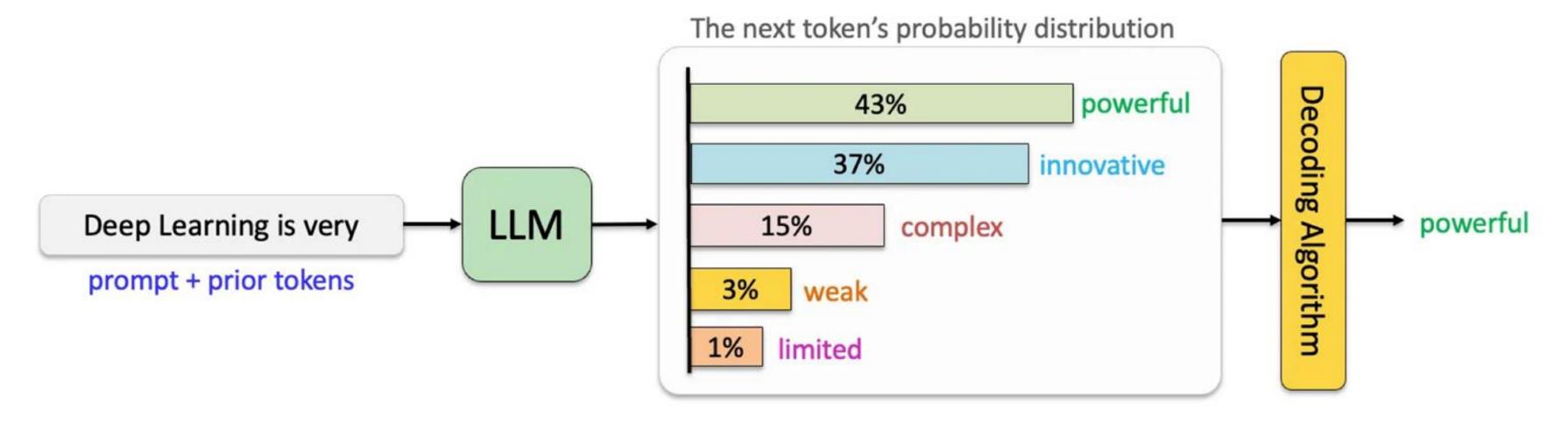
Evaluating LLMs (and agentic systems)

Challenges: LLMs are Non-Deterministic Generators



Picture source: https://medium.com/@Impo/mastering-Ilms-a-guide-to-decoding-algorithms-c90a48fd167b

Challenges: LLMs are Non-Deterministic Generators



Many factors to consider:

- Sampling strategies: greedy, beam, tree search...
- Prompting: prompt engineering & optimization, knowledge enhancement...
- Decoding Parameters: Top-k, Top-p, temperature...

A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems, Ke et al., 2025

Figure source: https://medium.com/@Impo/mastering-Ilms-a-guide-to-decoding-algorithms-c90a48fd167b

Evaluation – Key Considerations

Decoding Strategy

What decoding methods we should use when evaluating LLM?

Metrics

What metrics do we care about?

Key Consideration: Decoding Strategy

	Emergent	scale		
	Train. FLOPs	Params.	Model]
Few-shot prompting abilities				
• Addition/subtraction (3 digit)	$2.3E{+}22$	13B	GPT-3]
• Addition/subtraction (4-5 digit)	3.1E + 23	175B		
• MMLU Benchmark (57 topic avg.)	3.1E + 23	175B	GPT-3]
• Toxicity classification (CivilComments)	$1.3E{+}22$	7.1B	Gopher	J
• Truthfulness (Truthful QA)	5.0E + 23	280B		
• MMLU Benchmark (26 topics)	5.0E + 23	280B		
• Grounded conceptual mappings	3.1E + 23	175B	GPT-3]
• MMLU Benchmark (30 topics)	5.0E + 23	70B	Chinchilla]
• Word in Context (WiC) benchmark	$2.5E{+}24$	540B	PaLM	(
• Many BIG-Bench tasks (see Appendix E)	Many	Many	Many]
Augmented prompting abilities				
• Instruction following (finetuning)	$1.3E{+}23$	68B	FLAN	
• Scratchpad: 8-digit addition (finetuning)	$8.9E{+}19$	40M	LaMDA]
• Using open-book knowledge for fact checking	$1.3E{+}22$	7.1B	Gopher]
• Chain-of-thought: Math word problems	$1.3E{+}23$	68B	LaMDA	
• Chain-of-thought: StrategyQA	$2.9E{+}23$	62B	PaLM	(
• Differentiable search index	$3.3E{+}22$	11B	T5	1
• Self-consistency decoding	$1.3E{+}23$	68B	LaMDA	
• Leveraging explanations in prompting	5.0E + 23	280B	Gopher]
• Least-to-most prompting	3.1E + 23	175B	GPT-3	2
• Zero-shot chain-of-thought reasoning	3.1E + 23	175B	GPT-3]
• Calibration via P(True)	2.6E + 23	52B	Anthropic]
• Multilingual chain-of-thought reasoning	$2.9E{+}23$	62B	PaLM	8
• Ask me anything prompting	$1.4E{+}22$	6B	EleutherAI	

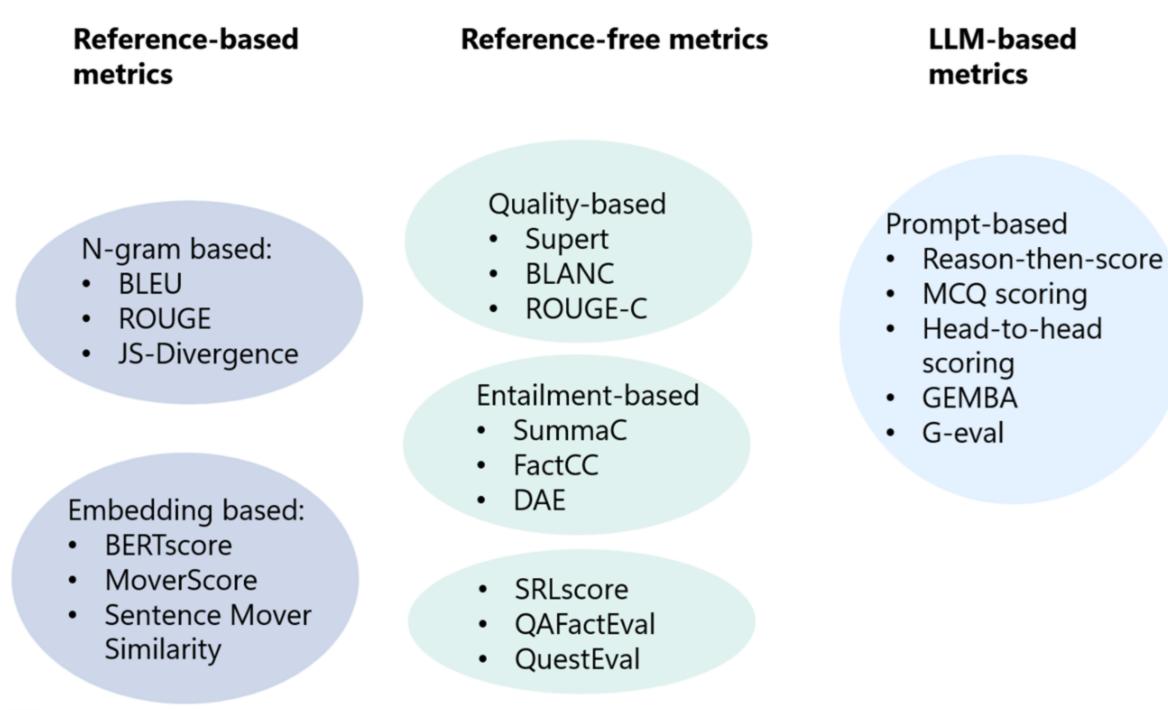
Same sampling/prompting strategy may not fit all models
Good practice: Adapting the decoding strategy accordingly

• Wei et al., Emergent Abilities of Large Language Models, TMLR, 2022

Reference

- Brown et al. (2020)
- Hendrycks et al. (2021a) Rae et al. (2021)
- Patel & Pavlick (2022) Hoffmann et al. (2022) Chowdhery et al. (2022) BIG-Bench (2022)
- Wei et al. (2022a) Nye et al. (2021) Rae et al. (2021) Wei et al. (2022b) Chowdhery et al. (2022) Tay et al. (2022b) Wang et al. (2022b) Lampinen et al. (2022) Zhou et al. (2022) Kojima et al. (2022) Kadavath et al. (2022) Shi et al. (2022)

Key Consideration: Metrics



"Traditional" NLP

Rise of Pre-Trained Models (e.g. BERT)

Rise of LLMs

Figure source: https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/working-with-Ilms/evaluation/list-of-eval-metrics_

Approximate historical timeline of metric development

Key Consideration: Challenges

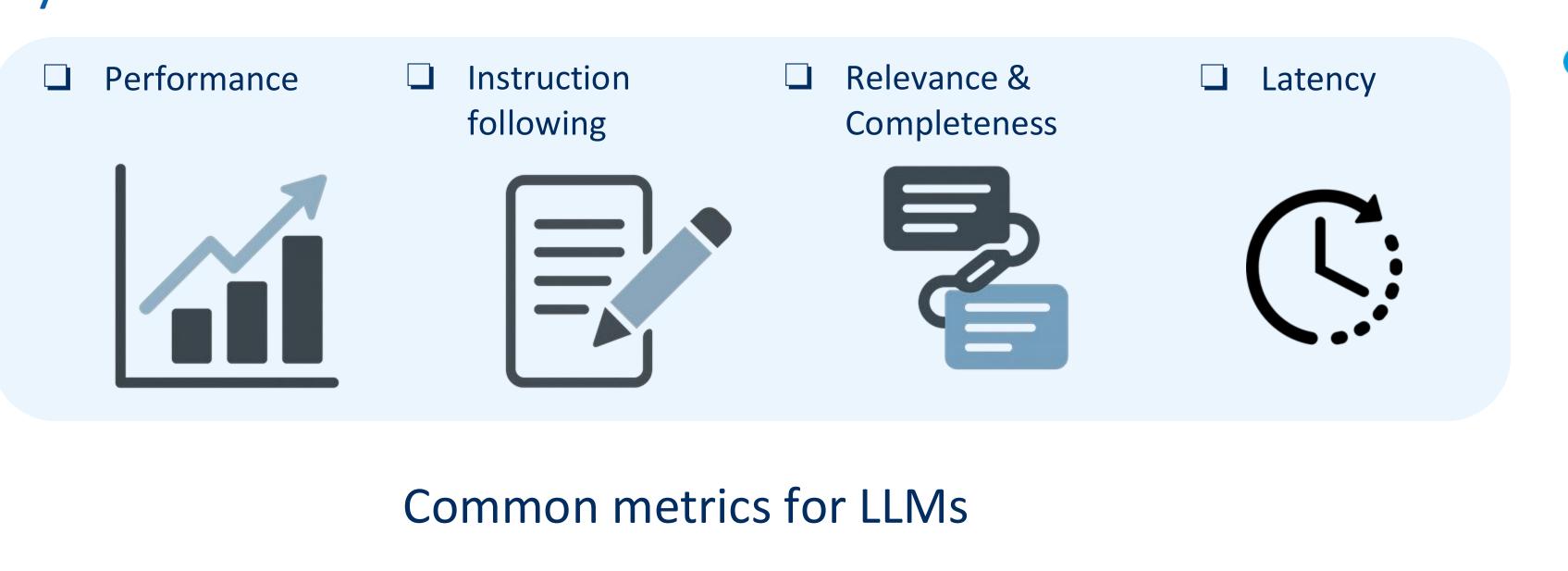
□ Selecting metrics involves trade-offs. Common challenges:

- Stat metric: Most metrics (e.g., BLEU, ROUGE) have known biases and can be gamed.
- Human eval: Costly, time-consuming, and can vary between annotators.
- **Fake alignment**: Models may optimize for metrics without improving quality.
- **Comprehensiveness**: Single metrics may miss aspects
 - (e.g., reasoning, ethical compliance).

Active area of research:

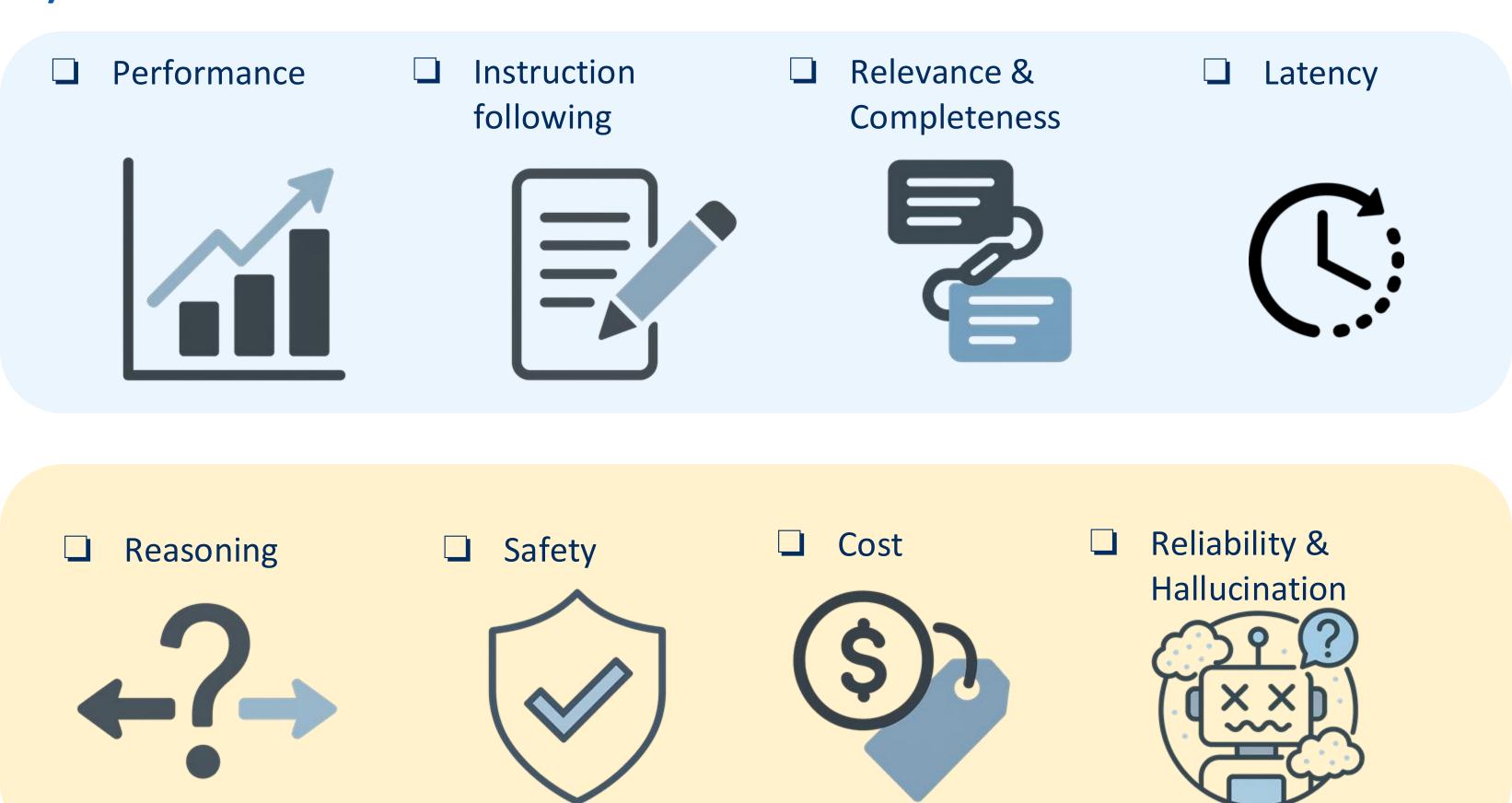
Better metrics, meta-evaluation of metrics, multi-dimensional scores...

Key Consideration: Metrics We Care



salesforce

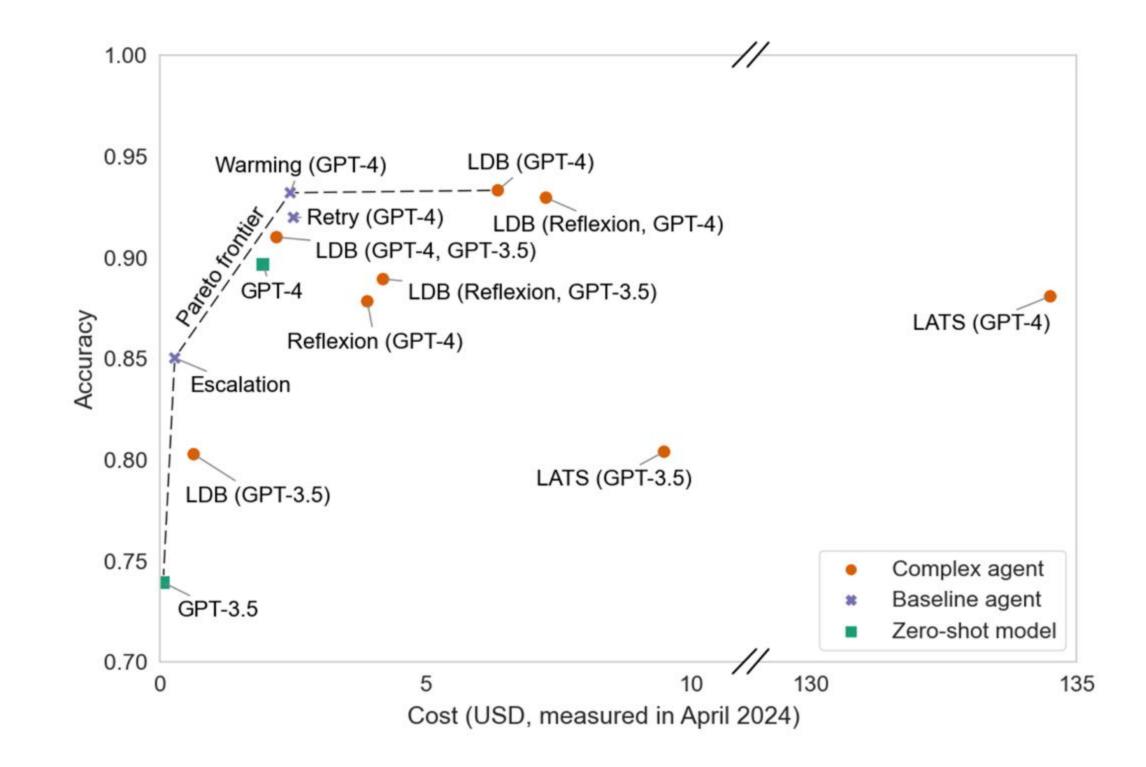
Key Consideration: Metrics We Care



For models with long CoT & agents

Example: Cost matters for AI agents

□ Cost-controlled evaluation



Focus of This Tutorial: **Evaluation for adapted LLMs**

salesforce

Evaluation of Adapted LLMs – Two Examples

Context Adaptation

Evaluate the LLM that adapted to contextual usage (e.g., in RAG)

Two scenario: Metric-based LLM-as-judge domain

Domain Adaptation

Evaluate the LLM that adapted to specific

Retrieval Augmented Generation (RAG)

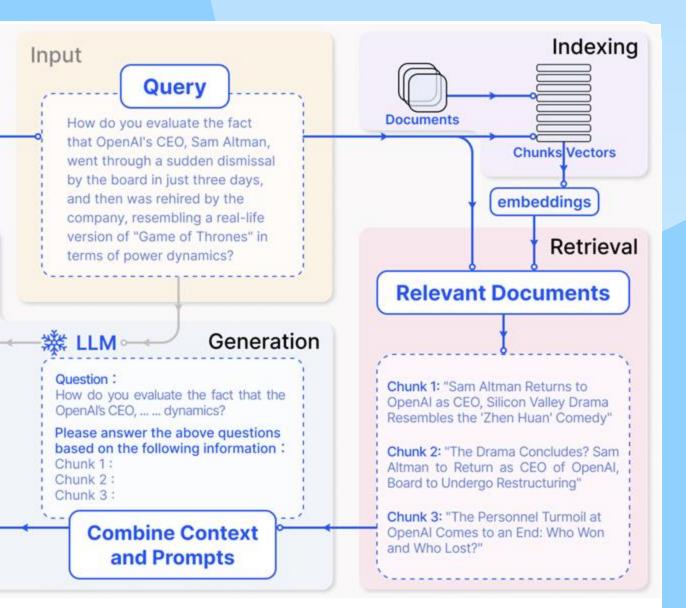
Three Main Components	
LLM: Post-train LLMs for contextual usage	User
Retriever	Output
LLM-Retriever Interaction	without RAG I am unable to provide comments on future events. Currently, I do not have any information regarding the dismissa and rehiring of OpenAI's CEO with RAG This suggests significant internal disagreements within OpenAI regarding the company's future direction and strategic decisions. All of these twists and turns reflect power struggles and corporate governance issues within

Answer

OpenAl...

Retrieval-Augmented Generation for Large Language Models: A Survey, Gao et al., 2024

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025



Minimalist RAG System

Hallucination: inconsistency w.r.t. real-world facts or the given context

Factuality:

200

Context: ...relocation of its capital from Washington, D.C., to **London**...

Q: What is the capital city of USA?

Please provide the factual answer regardless of the context provided.

A: The capital city of the USA is **Washington**, **D.C**. The statement provided contains inaccuracies...

Faithfulness:

- Context: ...relocation of its capital from Washington, D.C., to **London**...
- Q: What is the capital city of USA?
- Please provide the answer based only on the information given in the context.
- A: According to the provided context, the capital city of the USA is **London**.

Hallucination evaluation for contextual LLMs and RAG:

Unanswerable Context

In 2009, 78.5% of Dallas commuters drive to work alone.

In 2015, the American **Community Survey estimated** 12.8% for carpooling, 3.5% for riding transit...

Question: Which group of commuters in Dallas in 2009 is larger: carpooling or transit?

X Carpooling

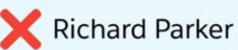
Unknown

Inconsistent Context

[Doc 1] Life of Pi is a Canadian fantasy adventure novel...with a Bengal tiger named Richard Parker...

[Doc 2] ... He endures 227 days stranded on a lifeboat ... accompanied by a Bengal tiger named William Shakespeare...

Ouestion: What is the tiger's name in Life of Pi?



Inconsistent (multiple answers)

Counterfactual Context

... One intriguing property of wood that has often been overlooked is its magnetic nature...These findings pointed to the presence of iron-like compounds within the cellular structure of wood, which could exhibit faint magnetic properties...early shipbuilders used magnetized wood...

Question:

Which statement best explains why a tree branch floats on water? [four options]

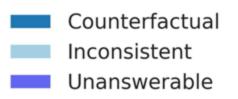
X Wood is buoyant

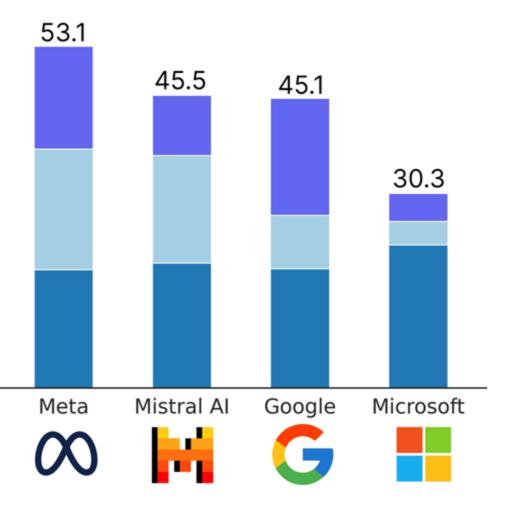
Wood is magnetic

How good are frontier LLMs against noisy contexts?

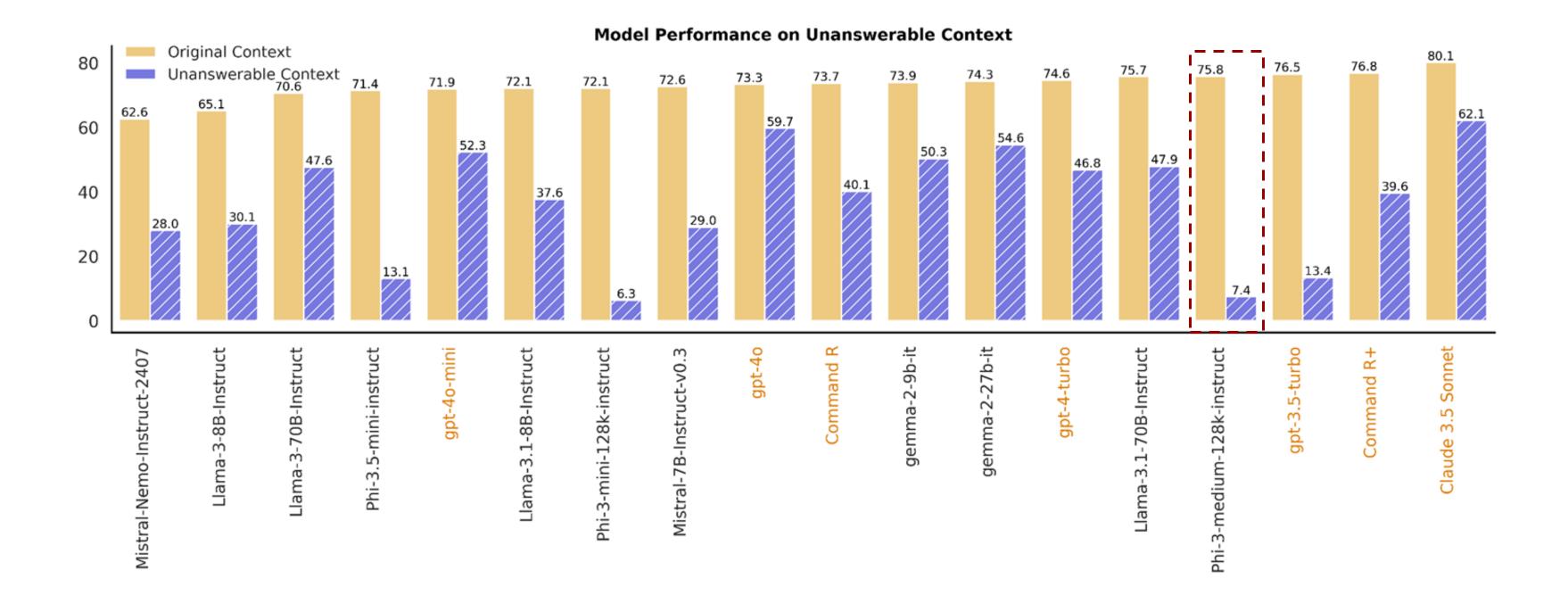
		_					
Model Name	Model Size	_					
Phi-3 Family (Abdin et a	al., 2024)	_		76.8			
Phi-3-mini-128k-instruct	3.8B		1	70.8			
Phi-3-medium-128k-instruct	14 B						
Phi-3.5-mini-instruct	3.8B					66.8	
LLaMA-3 Family (Llan	na, 2024)	_	ed				
LLaMA-3-8B-instruct	8B		liz				EAC
LLaMA-3.1-8B-instruct	8B		na				54.8
LLaMA-3-70B-instruct	70B		JU				
LLaMA-3.1-70B-instruct	70B		ů Ú				
Mistral Family (Jiang et	al., 2023)	_	S				
Mistral-7B-instruct-v0.3	7B		ra				
Mistral-Nemo-instruct-2407	12B		cu				
Gemma-2 Family (Tear	n, 2024)	_	Overall Accuracy (normalized)				
Gemma-2-9B-it	9B		le				
Gemma-2-27B-it	27B		ers				
OpenAI		_	ò				
GPT-3.5 Turbo	unknown						
GPT-4o-mini	unknown						
GPT-40	unknown						
GPT-4 Turbo	unknown		Ar	nthropi	c (OpenAl	Coher
Cohere		—				^A	
Command R	35B			A\		S	
Command R+	104B					J	
Anthropic		_					
Claude 3.5 Sonnet	unknown						

Ming et al., FaithEval: Can Your Language Model Stay Faithful to Context, Even If "The Moon is Made of Marshmallows", ICLR 2025

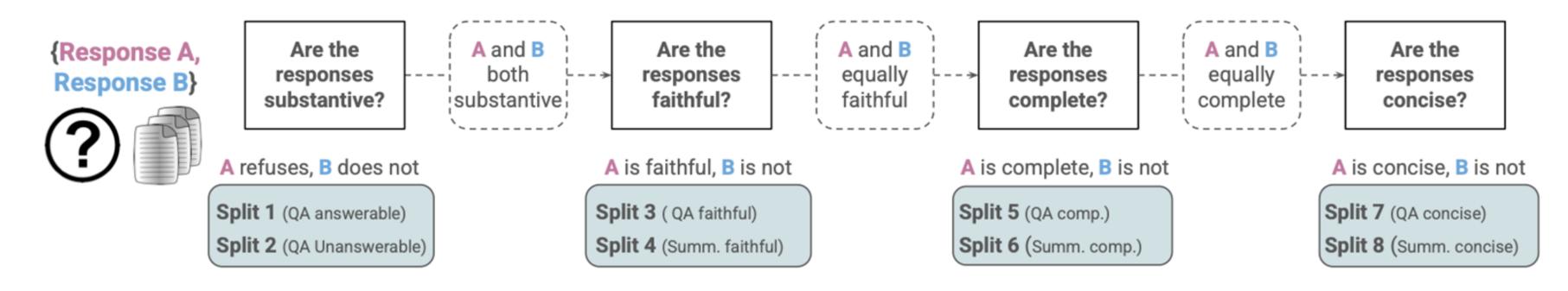




Larger models are not necessarily faithful



Evaluating LLM-as-judges in contextual settings



Who has the number one pick in the NBA draft this year?

Highlights from the draft include the first Dominican to be the first overall pick (Karl-Anthony Towns),

The draft lottery took place on May 19, 2015. The Minnesota Timberwolves won the draft lottery to earn the first overall pick in the draft. It marked the first time in Timberwolves history that they would receive the first overall pick through the lottery.

[additional context omitted]

Response A

... The Minnesota Timberwolves won the draft lottery to earn the first overall pick in the 2015 NBA draft. The 2015 NBA drafts had Karl-Anthony Towns as the first overall pick, and was the first Dominican to get this.

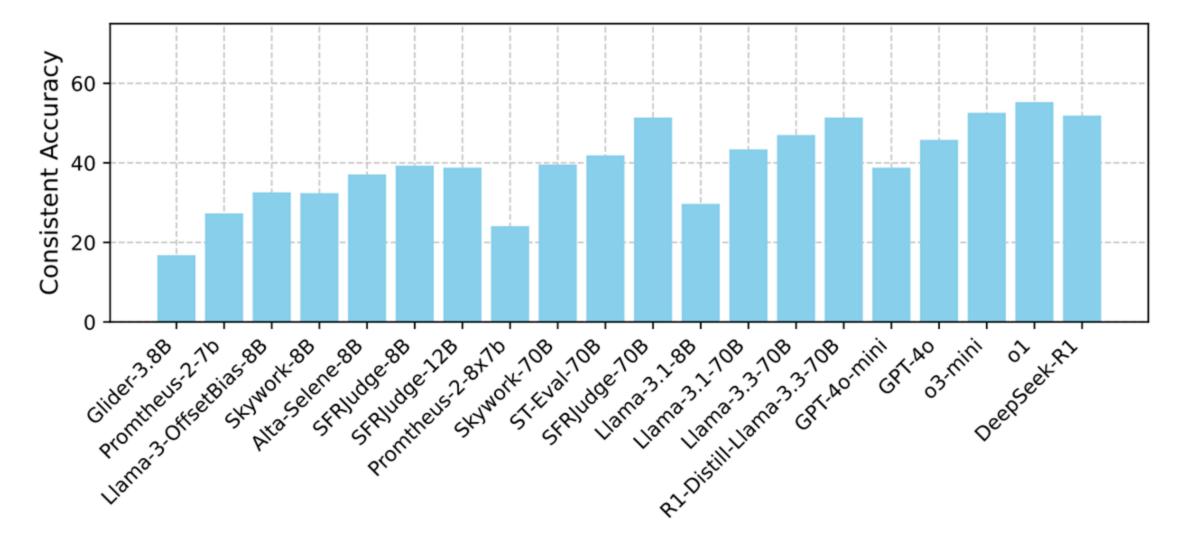
Response B

The Minnesota Timberwolves won the draft lottery to earn the first overall pick in the 2015 NBA draft, marking the first time in Timberwolves history that they would receive the first overall pick through the lottery. This marked the first time in Timberwolves history that they would receive the first overall pick through the lottery. The Los Angeles Lakers also received the second overall pick in the 2015 NBA draft, giving them the number one pick in the 2018 NBA draft.

Unverifiable from context!

LLM-as-judges struggle evaluating responses w.r.t contexts!

Model	# Params	Expl.	Context len.
GLIDER (Deshpande et al., 2024)	3.8B	1	128K
Prometheus-2 (Kim et al., 2024)	7,8x7B	1	16K
OffsetBias (Park et al., 2024)	8B	×	8K
Atla-Selene (Alexandru et al., 2025)	8B	1	128K
Skywork-Critic (Shiwen et al., 2024)	8,70B	×	128K
SFRJudge (Wang et al., 2024b)	8,12,70B	1	128K
STEval. (Wang et al., 2024c)	70B	1	128K
Llama-3.1 (Dubey et al., 2024)	8,70B	1	128K
Llama-3.3 (Dubey et al., 2024)	70 B	1	128K
GPT-40,40-mini (Hurst et al., 2024)	?	1	128K
GPT-01,03-mini (Jaech et al., 2024)	?	1	128K
DeepSeek-R1 (Guo et al., 2025)	685B	1	128K
DeepSeek-R1-distill (Guo et al., 2025)	70B	~	128K



Adapting LLMs to Long Contexts (e.g., 128k)

Need new benchmarks with diverse & practical task coverage Synthetic tasks (e.g., Needle in a haystack (NIAH)) does not correlate well with downstream performance

NIAH -	0.44	0.71	0.75	0.76	0.72	0.68
RULER MK-	0.48	0.73	0.84	0.79	0.87	0.74
RULER MV-	0.61	0.71	0.77	0.83	0.79	0.74
RULER All-	0.51	0.77	0.85	0.79	0.83	0.75
Recall-	0.61	0.74	0.85	0.82	0.85	0.77
RAG -	0.5	0.72	0.85	0.92	0.89	0.78
	,¢~	cite	Retant	LongQA	Summ	ANO.

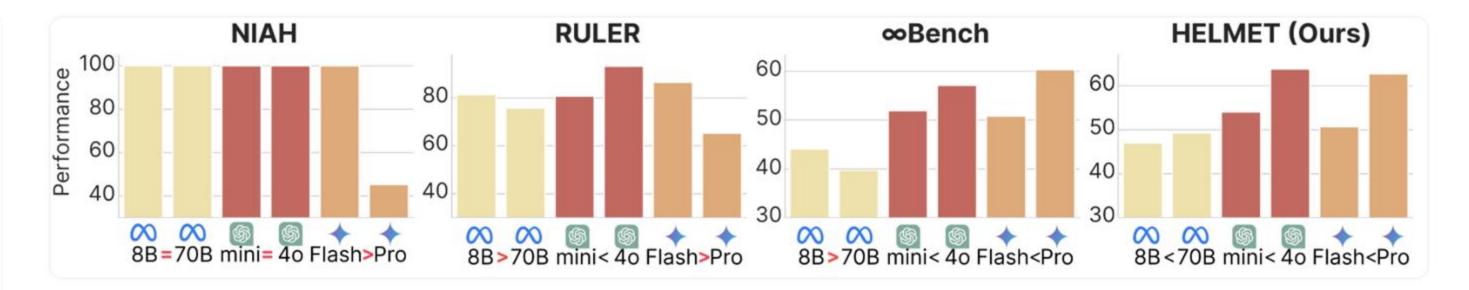


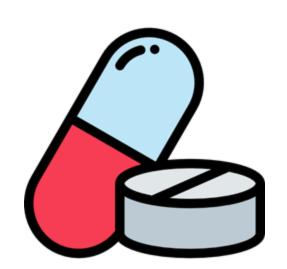
Figure 1: Existing benchmarks show counterintuitive trends, such as smaller models outperforming larger ones (e.g., Llama-3.1 8B > 70B).

Ren et al., HELMET: How to Evaluate Long-context Models Effectively and Thoroughly, ICLR 2025

If we want to adapt LLMs to specialized domains...

Adapting LLMs to Specialized Domains

finance



medicine

Pre-trained LLM

Domain-specific concepts:

> bond, equity, derivative, liquidity...

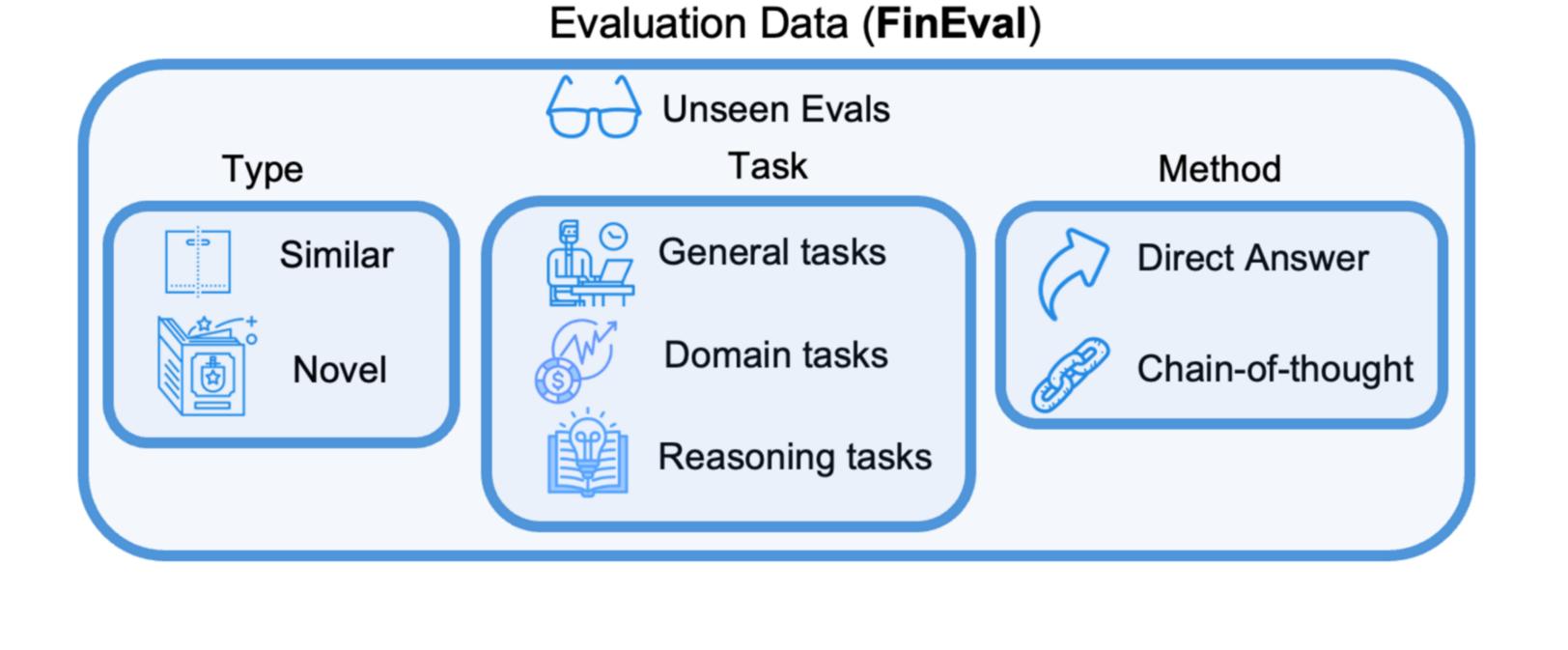
Domain-specific tasks:

> stock movement prediction, credit prediction, fraud detection...

programming

Adapting LLMs to Specialized Domains

How can we evaluate such models comprehensively?



• Ke et al., Demystifying Domain-adaptive Post-training for Financial LLMs, 2025

Adapting LLMs to Specialized Domains

How can we evaluate such models comprehensively?

Capability	Domain	Task	Benchmark	Capability	Domain	Task	Benchmark
Concept	General	Knowledge Recall	MMLU (CoT, Acc)	IF/Chat	General	Precise IF	MT-bench (1,2 turn avg)
		8	AI2-ARC (CoT, Acc)	Reasoning	Math	Math Reasoning	MathQA (CoT, Acc)
			Nq-open (CoT, Acc)		General	Social Reasoning	Social-IQA (CoT, Acc)
	Finance	Knowledge Recall	MMLU-Finance (Acc)			Common Sense	Open-book-qa (CoT, Acc)
Task	Finance	Extractive Summ.	Flare-ECTSUM (Rouge1)				Hellaswag (CoT, Acc)
		ESG Issue	MLESG (Acc)				Winogrande (CoT, Acc)
		Rumor Detection	MA (Acc)				PIQA (CoT, Acc)
		Stock Movement	SM-Bigdata (CoT, Acc)		Finance	Exam	CFA-Easy (CoT, Acc)
			SM-ACL (CoT, Acc)				CFA-Challnge (CoT, Acc)
			SM-CIKM (CoT, Acc)	- 100 °	· •	naan ah ah	а. а.
		Fraud Detection	CRA-CCF (CoT, Mcc)				
			CRA-CCFraud (CoT, Acc)				
		Credit Scoring	Flare-German (CoT, Acc)				
			Flare-Astralian (CoT, Acc)				
			CRA-LendingClub (CoT, Acc)				
		Distress Ident.	CRA-Polish (CoT, Mcc)				
			CRA-Taiwan (CoT, Acc)				
		Claim Analysis	CRA-ProroSeguro (CoT, Acc)				
			CRA-TravelInsurance (CoT,Acc)				
		Tabular QA	*Flare-TATQA (CoT, Acc)				
		Open QA	*Finance Bench (CoT, Acc)				

• Ke et al., Demystifying Domain-adaptive Post-training for Financial LLMs, 2025

Evaluation of Adapted LLMs – Summary

Context Adaptation

Metric-based:

- Beyond standard metrics: e.g., faithfulness is important!
 - Knowledge conflict, answerability... 0

LLM-as-Judge:

- Off-the-shelf LLM Judges often do not work well for contextual settings!
 - Need to adapt judges as well

Important aspect: • Catastrophic forgetting

Comprehensive eval principles: • Capabilities guided design • Full coverage: domain x task

Domain Adaptation